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Abstract

An analytic technique, namely the homotopy analysis method, is applied to solve the combined heat and mass
transfer by natural convection adjacent to a vertical wall in a non-Darcy porous medium governed by a set of three fully
coupled, highly nonlinear similarity equations. An explicit, totally analytic and uniformly valid solution is derived,

which agrees well with numerical results.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Combined heat and mass transfer driven by buoy-
ancy due to temperature and concentration is of prac-
tical importance, since there are many possible
engineering applications, such as the migration of
moisture through the air contained in fibrous insulations
and grain storage installations, and dispersion of
chemical contaminants through water-saturated soil.
The state of art concerning combined heat and mass
transfer in porous media has been summarized in the
excellent monographs by Nield and Bejan [1].

A number of studies have been reported in the liter-
ature focusing on the problem of combined heat and
mass transfer in porous media. Nield [2] made the first
attempt to study the stability of convective flow in
horizontal layers with imposed vertical temperature and
concentration gradients. This was followed by Khan and
Zebib [3] in the study of flow stability in a vertical po-
rous layer. Jang and Chang [4] analyzed the vortex in-
stability along a horizontal surface by considering
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boundary layer flows. Raptis et al. [5,6] presented a se-
ries solution considering wall-shear and suction for
boundary layer flows with different wall conditions. For
a vertical plate in a saturated porous medium, Bejan and
Khair [7] reported similarity solutions for the special
case of a wall with constant temperature and concen-
tration. This fundamental case was also treated by Na-
kayama and Hossain [8] and Singh and Queeny [9] using
an integral method. Lai and Kulacki [10] considered
another important case of a wall with constant heat and
mass flux including the effect of wall injection. The dis-
persion and opposing buoyancy effects were analyzed by
Telles and Trevisan [11] and Angirasa et al. [12], re-
spectively. Natural convection in porous media with
combined buoyancy effects for other geometries were
studied by Trevisan and Bejan [13,14], Hasan and Mu-
jumdar [15], Jang and Chang [16], Lai et al. [17]. In
addition to the previous studies for steady cases, un-
steady flows were also extensively studied by Raptis [18],
Jang and Ni [19], Kumari and Nath [20], and Pop and
Herwig [21]. A good literature review on the phenomena
has been recently provided by Trevisan and Bejan [22].

Relative to the above research activities on Darcy
flow driven by double buoyancy effects, the works on
non-Darcy flow driven by two buoyancy effects are quite
limited. Kumari et al. [23] focused on the free convection
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from axisymmetric bodies of arbitray shape, while Jang
et al. [24] addressed on that from a vertical wall. Double-
diffusion from a vertical surface in a porous region sat-
urated within a non-Newtonian fluid was studied by
Rastogi and Poulikakos [25]. Recently, based on
Forchheimer flow model, Murthy and Singh [26] studied
the effect of lateral mass flux on the free convection heat
and mass transfer from a vertical wall in a fluid satu-
rated porous medium.

Due to its important applications in many fields de-
scribed by Nield and Bejan [1], a full understanding for
combined heat and mass transfer by non-Darcy natural
convection from a heated flat surface embedded in fluid-
saturated porous medium is meaningful. Although nu-
merical results have been reported by Murthy and Singh
[26], to our knowledge, no one has reported an explicit,
totally analytic, uniformly valid solution for this prob-
lem. In this paper, we employ the homotopy analysis
method (HAM) [27-33] to give such an explicit analytic
solution. It is expected that the solution thus obtained
will have useful applications in practice and will serve as
a complement to the existing literature.

2. Governing equations

Consider a vertical flat plate embedded in a saturated
porous medium as shown in Fig. 1. The plate may be
permeable (v, # 0) or impermeable (v, = 0). The sur-
face of the plate is maintained at a constant temperature
Ty higher than its ambient temperature 7,,, and at the
same time the concentration of a constituent decreases
from C,, at the wall to C,, sufficiently away from the
wall. Having invoked the Boussinesq and boundary-
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Fig. 1. Coordinate system.

layer approximations, the governing equations based on
the Forchheimer’s formulation are given as by [26]
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where (x,y) are the non-dimensional Cartesian coordi-
nates along and normal to the flat surface, u and v are
the velocity components in x- and y-directions, respec-
tively, T is the temperature, C is the concentration, Jr
and ¢ are the thermal boundary layer thickness and the
concentration boundary layer thickness, i1 is the coef-
ficient of thermal expansion, f is the coefficient of
concentration expansion, v is the kinematic viscosity of
the fluid, K is the permeability constant, ¢ is an empirical
constant, g is the gravity acceleration, o and D are the
thermal and solutal diffusivities, respectively.
The boundary conditions to be considered are

C=C,, (5)
C=C,, (6)

y=0: v="1y, T =T,

y— 00! u:O, T:Toov

where v, = Ex~'/2, E is a real constant.
Under the transformation

n="Ra), ™)
u=>Ra,f'(n), ®)
v:—z—a;Ral/z(f—nf'), )
00n) = 7= (10)
B = o (1)

where Ra, is the modified Rayleigh number defined by
_ KgPr(Tw — Too)x

Ra, — (12)
one has
11 +26Gif 1" = 0 + B!, (13)
/. 1 /
" 1 !
¢ = —5Lefd, (1)
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subject to the boundary conditions

f0) =fv, 0(0)=¢(0)=1, (16)

f'(00) = 0(c0) = ¢(00) =0, (17)

where

G C\/I?KgﬁTvETw —Ty) ’ (18)

_ ﬁ (Cw B COO)

Br—iﬁi(Tw_T&), (19)
o

Le =5 (20)

fo= S — (21)

vV OﬂKgﬁT(Tw - Too)

are the Grashof number, the buoyancy ratio, the Lewis
number and the mass flux parameter, respectively.

3. Explicit analytic solution given by the HAM

Due to the boundary conditions (16) and (17), f (),
0(n) and ¢(n) can be expressed in the following forms

fn) = ZOOA" exp(—nyn), (22)
0n) = > Byexp(—mm), (23)
o) = Coexp(—mm), (24)

n=1

respectively, where 4,, B, and C, are coefficients to be
determined, y is a positive constant to be chosen. Then,
due to (16) and (17), it is straightforward to choose

So(n) =1+ fi — exp(—yn), (25)
Oo(n) = exp(=yn) +2 exp(=2ym). (26)
bo (1) = exp(—=yn) +2 exp(—2yn) (27)

as the initial approximations of f(n), 0(n) and ¢(n),
respectively. Furthermore, we choose

¥ 0

Li=———
1 6712 a]/[?

(28)
L, = exp(yn) (66—172 - l), (29)

as our auxiliary linear operators, which have the fol-
lowing properties

Li[Ci + Cyexp(n)] = 0, (30)

Ly[Cyexp(—n) + Cyexp(n)] =0, (1)

where Cy, C,, C3 and C, are integral constants.
Then, we construct the so-called zeroth-order defor-
mation equations

(1 =p)Li[F(n; p) — fo(n)]

= phyN/[F(n;p), @(n; p), @(n; ), (32)
(1 = p)La2[® (5 p) — Oo(n)]

= phoNo[F (n;p), ©(n; p)], (33)
(1 =p)La[®(n; p) — ¢o(n)]

= phyNy[F(n; p), ®(n; p)], (34)
subject to the boundary conditions
F(0:p) = fw, ©(0:p) = &(0;p) =1, (35)
Tl =t = #ein =0, (36)

under the definitions

o'F OF O’F 00 0P
NiF,0,0| = —+2Gr — = — = —Br— 37
.f[ Y, ] o + r@n o o ranv ( )
’e 1 _00
No[F,@] —a—r’2+§Fa—n, (38)
oo 1 0P

where p € [0,1] is an embedding parameter, /,, %, and

hy are the auxiliary non-zero parameters. Obviously,

F(n;0) = fo(n), ©@n;0) = 0o(n), P(1;0) = (1)
(40)

and

F(n; 1) =f(n), Ou;1)=0@n), &;1)= ),

(41)
when p = 0 and p = 1, respectively.
We expand F(i;p), ©(n;p) and &(n;p) in Taylor’s
power series at p = 0, say

Fsp) = F0) + 3 fuln)p )
O(n;p) = O(n;0) + i 0 (mp™, (43)
(1) = 100+ S )", (44)
where

1) = (45)




4816 C. Wang et al. | International Journal of Heat and Mass Transfer 46 (2003) 48134822

1 0"O(n;

On(n) = ol # Y (46)
1 0"d(n;

b= i | )

Note that the convergence regions of the series (42)—(44)
are dependent upon the auxiliary parameter 7%, %y and
hy. If the auxiliary parameters 7, /iy and 74 are properly
chosen so that the series (42)-(44) are convergent at
p =1, we have due to (40) and (41) that

M+ ) (48)

)+ Z O,( (49)

m=

<Wb%w+fmw. (50)

Differentiating the Eqgs. (32)-(34) m times with respect to
p and then setting p = 0 and finally dividing them by m!,
we obtain the so-called mth-order deformation equa-
tions for f,,(n), 0,.(n) and ¢,,(n) (for details, please refer
to Liao [30,31])

Lylfn(n) = LnSwr ()] = ByRon(n), (51)
Lo[0n(1) = 2 On-1(n)] = FioS (), (52)
Lo (1) = A Pps ()] = T W (), (53)
subject to the boundary conditions

fn(0) =0,  0,(0) = ¢,(0) =0, (54)
Jn(00) = b,(00) = ¢,,(00) =0, (55)

under the definitions

Ru(n) = fn_y (1) = On_1(n) — Brep,,_, (n)

m—1

+2Ger o), (56)
SU—%&)%EMWLAM (57)
VV,,,(VI) + Le an m 1-, n (58)
and
m={1 ") (59)

It is found that f,(n), 0,(n) and ¢,,(y) governed by
(51)—(55) can be expressed by

2m+1

Tu() = anpexp(—kyn), (60)

k=0

2m+2

= busexp(—kyn), (61)
2m+2
Z Ci exp(—kyn) (62)

for m > 1, where a,, b,; and c,; are coeflicients.
Substituting above expressions into (51)—(55), we have
the recursive formulae

hy
mk = —Fm /Im— m—1,
Ak K+ 17 & 7 L Am—1+10m—1 k
for 1 <k<2m-+1, (63)
2m+1
amo = — Z Am ks (64)
k=1
h ;
bm,k = mAm,k—l + Xm/“m—l.kbm—l.k
for 2<k<2m+2, (65)
2m+-2

m 1= Z bmka (66)

hy .,
Cmk = m/lm‘kfl + X/ m—1kCm—1k
for 2<k<2m+2, and (67)
2m+2
Cml = — Z Cm ks (68)
k=2
where

FmJ( = /AmelJ(Jrlamfl,k(kv)z + j'mfl.,k(bmfl,k

+ Brew-1x) (ky) + By (69)
App = /lm—l?kbm—l.k(k"/)z + Doy (70)
Am.k = j-mfl.kcmfl.k(k’\/)z + Pk

for 1 <k <2m + 1, under the definitions (71)

m—1 min{2m—2n—1k—1}

Bui = 2Gr Z

n=0 s=max{l.k—2n—1}

2.3
(S - k)S V" Ank—sAm—1-n,s

or 2< k< 2m,
for2<k<2 72
ﬁm,l = 07 (73)
B pmst =0, (74)
1 —1  min{2m—2nk}
mk - E Z ysantkfxbmflfn.x

n=0 s=max{l,k—2n—1}

for 1<k<2m+1, (75)
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L m—1  min{2m—2nk}
q)m,k = Ee ZO VS k—sCm—1-n,s
n=0 s=max{l.k—2n—1}
for 1 <k<2m+1, and (76)

1<k<2m+2,

L,
Ik = {07 otherelse. 7

Using above recursive formulae, we can calculate all
coefficients a,,x, b, and ¢, by using only the first six
1

2 )
(78)

aoo =14+ fu, ao1=—1, boi=bor=co1=cor=

given by the initial approximations (25)—(27). The cor-
responding Mth-order approximations of (48)—(50) are

M M 2m+1
) = foln) + Y fuln) =D D ampexp(—kyn),
m=1 m=0 k=0
(79)
M M 2m+2
0(n) = Oo(n) + > 0n(m) =D > busexp(—kymn),
m=1 m=0 k=1
(80)
M M 2m+2
G =~ do(n) + D buln) =Y D empexp(—kyn).
m=1 m=0 k=1
(81)

When M — 400, we have an explicit, totally analytic
solution of (13)-(17).

initial guesses of the numerical solutions are given by fo,
0y and ¢,, defined by Eqs. (25)~(27), respectively. To
satisfy the boundary conditions at infinity, an integra-
tion distance #,, = 40, which was discretized into 10000
intervals, was found to be adequate. The iterative inte-
gration procedure was repeated until the RMS error for
each discretized Egs. (13)-(15) are not greater than
5%107°,

Note that our explicit analytic solution contains the
auxiliary parameters 7, %y, /iy and y, which we have
great freedom to choose. This provides us with a simple
way to ensure the convergence of the series (48)—(50), as
pointed out by Liao and his co-authors [29-33]. The
parameters used for the analytic solution are listed in
Table 1.

Analytic solutions of different order of approxima-
tion in case of Gr=1, Br=1, f, =1 and Le =2 are
shown in Tables 2-4, compared with numerical results.
It is found that our analytic approximations agree well
with the numerical ones so long as the order of ap-
proximation is high enough.

The non-dimensional velocity component in the
x-direction f”(57), temperature distribution 0(5) and con-
centration distribution ¢(n) for varing mass flux para-
meter are plotted in Figs. 2-4 when Gr =1, Br =4,
Le = 2. Analytic solutions for another important case of
fixing Gr = 1, Br = 1, Le = 4 are shown in Figs. 5-7. All
of them clearly indicate the very good agreement be-
tween the analytic solutions and the numerical results.

The local heat and mass fluxes from the wall are
given as by [26]

k@T

=—k— 82
q % |0 (82)
4. Validation of the explicit analytic solution
and
In this section, we verify our analytic solutions by the
numerical integration using the fourth-order Runge— m=— D@_C , (83)
Kutta method and Newton-Raphson technique. The W o
Table 1
Parameters used in our analytic approach
Gr Br fw Le hy N Tig b Order M
1 4 1 2 -0.4 -1.5 -1.5 1.2 60
1 4 0 2 -0.4 -1.5 -1.0 1.1 60
1 4 -1 2 -0.3 -0.8 -0.6 0.7 60
1 1 1 4 -0.5 -1.5 -0.8 1.0 60
1 1 0 4 -0.6 -1.5 -1.5 0.8 60
1 1 -1 4 -0.5 -1.5 -0.6 0.7 80
1 10 1 2 -0.3 -1.5 -0.6 1.0 80
1 10 2 -0.2 -1.5 -1.0 1.2 80
1 10 -1 2 -0.1 -0.5 -0.1 0.7 80
1 1 1 10 -0.3 -1.5 -0.2 1.2 80
1 1 0 10 -0.7 -1.0 -0.4 0.8 80
1 1 -1 10 -0.6 -1.0 -0.6 1.0 100
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Analytical results of /() at different order of approximation compared with numeric results in case of Gr =1, Br =1, f, =1, Le =2

n 10 order 20 order 30 order 40 order 50 order 60 order 80 order 100 order ~ Numeric results
0 1.0020 1.0009 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 0.6785 0.6716 0.6702 0.6700 0.6700 0.6700 0.6700 0.6700 0.6699
1 0.4378 0.4278 0.4261 0.4259 0.4258 0.4258 0.4258 0.4258 0.4257
1.5 0.2739 0.2636 0.2619 0.2617 0.2617 0.2617 0.2616 0.2616 0.2614
2 0.1681 0.1594 0.1580 0.1578 0.1578 0.1577 0.1577 0.1577 0.1575
2.5 0.1022 0.0956 0.0944 0.0943 0.0942 0.0942 0.0942 0.0941 0.0939
3 0.0618 0.0572 0.0563 0.0562 0.0561 0.0561 0.0560 0.0560 0.0557
3.5 0.0374 0.0343 0.0336 0.0335 0.0335 0.0334 0.0334 0.0333 0.0330
4 0.0226 0.0206 0.0201 0.0201 0.0200 0.0200 0.0199 0.0198 0.0196
4.5 0.0137 0.0124 0.0121 0.0120 0.0120 0.0120 0.0119 0.0119 0.0116
5 0.0083 0.0075 0.0073 0.0073 0.0072 0.0072 0.0072 0.0071 0.0069
5.5 0.0050 0.0045 0.0044 0.0044 0.0044 0.0043 0.0043 0.0043 0.0041
6 0.0031 0.0027 0.0027 0.0027 0.0026 0.0026 0.0026 0.0026 0.0025
6.5 0.0019 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015
7 0.0011 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0009 0.0009
7.5 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005
8 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
Table 3

Analytical results of () at different order of approximation compared with numeric results in case of Gr=1,Br=1, f, =1, Le =2

n 10 order 20 order 30 order 40 order 50 order 60 order 80 order 100 order ~ Numeric results

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.5 0.6544 0.6563 0.6569 0.6571 0.6571 0.6571 0.6571 0.6571 0.6569

1 0.4109 0.4138 0.4147 0.4150 0.4150 0.4150 0.4150 0.4149 0.4147

1.5 0.2512 0.2541 0.2552 0.2554 0.2555 0.2555 0.2554 0.2554 0.2551

2 0.1513 0.1537 0.1546 0.1548 0.1549 0.1549 0.1548 0.1547 0.1544

2.5 0.0907 0.0922 0.0929 0.0930 0.0931 0.0931 0.0930 0.0929 0.0926

3 0.0544 0.0553 0.0556 0.0557 0.0557 0.0557 0.0556 0.0555 0.0552

3.5 0.0327 0.0332 0.0333 0.0334 0.0333 0.0333 0.0332 0.0332 0.0328

4 0.0197 0.0199 0.0200 0.0200 0.0200 0.0200 0.0199 0.0198 0.0195

4.5 0.0119 0.0120 0.0121 0.0121 0.0120 0.0120 0.0119 0.0119 0.0116

5 0.0072 0.0073 0.0073 0.0073 0.0072 0.0072 0.0072 0.0071 0.0069

5.5 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0043 0.0043 0.0041

6 0.0026 0.0027 0.0027 0.0027 0.0026 0.0026 0.0026 0.0026 0.0025

6.5 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015

7 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0009 0.0009

7.5 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005

8 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
where k is the thermal conductivity of the porous me- Nu = qx (86)
dium. With the aid of Eqs. (7), (10) and (11), Eqgs. (82) k(Ty —Ty)’
and (83) can be rewritten as G ™ (87)

— 1 12 D(CW - Coo)
q=—k(Ty — Tos) =Ra,/“0'(0), (84)

x and with the aid of Egs. (84) and (85), the non-dimen-
m=—D(Cy—C.) l Ra'2 (0). (85) sional heat transfer goefﬁcient and'the non-dimensional
x mass transfer coefficient can be written as

From the definitions of the local Nusselt number and
Sherwood number

Nu

vRa,

=—0'(0), (88)
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Analytical results of ¢(n) at different order of approximation compared with numeric results in case of Gr = 1, Br =1, f, =1, Le =2

n 10 order 20 order 30 order 40 order 50 order 60 order 80 order 100 order ~ Numeric results
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.5 0.4762 0.4637 0.4621 0.4618 0.4617 0.4617 0.4617 0.4617 0.4618

1 0.2105 0.1946 0.1926 0.1922 0.1921 0.1921 0.1921 0.1921 0.1922

L.5 0.0910 0.0769 0.0751 0.0747 0.0746 0.0746 0.0746 0.0746 0.0747

2 0.0400 0.0295 0.0281 0.0278 0.0277 0.0277 0.0277 0.0277 0.0278

2.5 0.0184 0.0112 0.0103 0.0101 0.0100 0.0100 0.0100 0.0100 0.0101

3 0.0089 0.0043 0.0037 0.0036 0.0035 0.0035 0.0035 0.0036 0.0036

3.5 0.0046 0.0017 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013

4 0.0025 0.0007 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

4.5 0.0014 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002

5 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

5.5 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6.5 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7.5 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sh , curate enough analytic solutions for Le > 10 at present,
Ra, =—¢(0). (89) although, theoretically speaking, our analytic solution is

The Analytic values of 6'(0) and ¢'(0) against Br, Le
and f are as shown in Figs. 8—11. The analytic solutions
agree well with numerical results given by Murthy and
Singh [26]. It should be pointed out that Murthy and
Singh had presented numerical results for Lewis number
Le ranged from 0.1 to 500. However, we find that higher
order of approximation is needed when Le > 10. Due to
the capacity of our computer, we are unable to give ac-

fm)

Fig. 2. Analytic results of f’(1) compared with numerical ones
when Gr =1, Br =4, Le = 2. Symbol: numerical results; solid
line: homotopy analysis results.

valid for any combination of Gr, Br, f,, and Le so long as
the parameter 7, %y, /iy and y are properly selected and
the order of approximation is high enough. Even though,
our analytic solution agree well with numerical results
for a wide range of the governing parameters, as shown
in Figs. 8-11. All of the numerical results verify that our
analytic solution is uniformly valid.

om)

L ey - B8
0 1 2 3 4 5 6
n

Fig. 3. Analytic results of 6(y) compared with numerical ones
when Gr =1, Br =4, Le = 2. Symbol: numerical results; solid
line: homotopy analysis results.
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om)

Fig. 4. Analytic results of ¢(1) compared with numerical ones
when Gr =1, Br =4, Le = 2. Symbol: numerical results; solid
line: homotopy analysis results.

frm

\\\\I\\\\I\\\\I\\\I ET g
0 1 2 3 4 5 6 7 8
n

Fig. 5. Analytic results of f/(17) compared with numerical ones
when Gr =1, Br =1, Le = 4. Symbol: numerical results; solid
line: homotopy analysis results.

5. Conclusions

In this paper, we apply the homotopy analysis
method [27-33] to obtain an explicit, totally analytic,
uniformly valid solution of a set of three fully coupled,
highly nonlinear similarity equations appeared in com-
bined heat and mass transfer by non-Darcy free con-

6m)

Fig. 6. Analytic results of 0(y) compared with numerical ones
when Gr =1, Br =1, Le = 4. Symbol: numerical results; solid
line: homotopy analysis results.

om)

Fig. 7. Analytic results of ¢(1) compared with numerical ones
when Gr =1, Br =1, Le = 4. Symbol: numerical results; solid
line: homotopy analysis results.

vection in porous medium (see [26]). The validity of our
analytic solution is verified by numerical results. To the
best of authors’ knowledge, such kind of analytic solu-
tion has never been reported. This explicit analytic so-
lution might find wide applications in engineering, such
as the migration of moisture through the air contained
in fibrous insulations and grain storage installations,
and dispersion of chemical contaminants through water-
saturated soil.
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Fig. 8. The effect of buoyancy ratio Br on the Nusselts number
when Gr=1, Le=2. Symbol: numerical results given by
Murthy and Singh [26]; solid line: homotopy analysis results.

-6 (0)

0.8

0.6

0.4

0.2

—_—

0\\|\\\\|\\\\l\\\\l\\\\l\\\\l

Br

Fig. 9. The effect of buoyancy ratio Br on the Sherwood
number when Gr = 1, Le = 2. Symbol: numerical results given
by Murthy and Singh [26]; solid line: homotopy analysis results.

References

[1] D.A. Nield, A. Bejan, Convection in Porous Media, second
ed., Springer, New York, 1998.

[2] D.A. Nield, Onset of thermohaline convection in a porous
medium, Water Resour. Res. 4 (1968) 553-560.

[3] A.A. Khan, A. Zebib, Double diffusive instability in a
vertical layer of a porous medium, J. Heat Transfer 103
(1981) 179-181.

0.9

0.8

0.7

0.6

0.5

-6 (0)

0.4

0.3

0.2

0.1

|

=
[N]
IS
=
=)
=y

Le

Fig. 10. The effect of Lewis number on the Nusselt number
when Gr=1, Br=1. Symbol: numerical results given by
Murthy and Singh [26]; solid line: homotopy analysis results.

-0 (0)

Fig. 11. The effect of Lewis number on the Sherwood number
when Gr=1, Br=1. Symbol: numerical results given by
Murthy and Singh [26]; solid line: homotopy analysis results.

[4] J.Y. Jang, W.J. Chang, The flow and vortex instability of
horizontal natural convection in a porous medium result-
ing from combined heat and mass buoyancy effects, Int. J.
Heat Mass Transfer 31 (1988) 769-777.

[5] A. Raptis, G. Tzivanidis, N. Kafousias, Free convection
and mass transfer flow through a porous medium bounded
by an infinite vertical limiting surface with constant
suction, Lett. Heat Mass Transfer 8 (1981) 417-424.

[6] A. Raptis, N. Kafousias, C. Massalas, Free convection and
mass transfer flow through a porous medium bounded by



4822 C. Wang et al. | International Journal of Heat and Mass Transfer 46 (2003) 48134822

an infinite vertical porous plate with constant heat flux,
ZAMM 62 (1982) 489-491.

[7]1 A. Bejan, K.R. Khair, Heat and mass transfer by natural
convection in a porous medium, Int. J. Heat Mass Transfer
28 (1985) 909-918.

[8] A. Nakayama, M.A. Hossain, An integral treatment for
combined heat and mass transfer by natural convection in
a porous medium, Int. J. Heat Mass Transfer 38 (1995)
761-765.

[9] P. Singh, Queeny, Free convection heat and mass transfer
along a vertical surface in a porous medium, Acta Mech.
123 (1997) 69-73.

[10] F.C. Lai, F.A. Kulacki, Coupled heat and mass transfer by
natural convection from vertical surfaces in porous media,
Int. J. Heat Mass Transfer 34 (1991) 1189-1194.

[11] R.S. Telles, O.V. Trevisan, Dispersion in heat and mass
transfer natural convection along vertical boundaries in
porous media, Int. J. Heat Mass Transfer 36 (1993) 1357-
1365.

[12] D. Angirasa, G.P. Peterson, I. Pop, Combined heat and
mass transfer by natural convection with opposing buoy-
ancy effects in a fluid saturated porous medium, Int. J.
Heat Mass Transfer 40 (1997) 2755-2773.

[13] O.V. Trevisan, A. Bejan, Natural convection with com-
bined heat and mass transfer buoyancy effects in a porous
medium, Int. J. Heat Mass Transfer 28 (1985) 1597-1611.

[14] O.V. Trevisan, A. Bejan, Mass and heat transfer by natural
convection in a vertical slot filled with porous medium, Int.
J. Heat Mass Transfer 29 (1986) 403-415.

[15] M. Hasan, A.S. Mujumdar, Transpiration-induced buoy-
ancy effect around a horizontal cylinder embedded in a
porous medium, Int. J. Energy Res. 9 (1985) 151-163.

[16] J.Y. Jang, W.J. Chang, Buoyancy-induced inclined bound-
ary layer flow in a porous medium resulting from combined
heat and mass buoyancy effects, Int. Commun. Heat Mass
Transfer 15 (1988) 17-30.

[17] F.C. Lai, C.Y. Choi, F.A. Kulacki, Coupled heat and mass
transfer by natural convection from slender bodies of
revolution in porous media, Int. Commun. Heat Mass
Transfer 17 (1990) 609-620.

[18] A.A. Raptis, Unsteady free convective flow and mass
transfer through a porous medium bounded by an infinite
vertical limiting surface with constant suction and time-
dependent temperature, Int. J. Energy Res. 7 (1983) 385-
389.

[19] J.Y. Jang, J.R. Ni, Transient free convection with mass
transfer from an isothermal vertical flat plate embedded in
a porous medium, Int. J. Heat Fluid Flow 10 (1989) 59-65.

[20] M. Kumari, G. Nath, Double diffusive unsteady free
convection on two-dimensional and axisymmetric bodies in
a porous medium, Int. J. Energy Res. 13 (1989) 379-
391.

[21] I. Pop, H. Herwig, Transient mass transfer from an
isothermal vertical flat plate embedded in a porous
medium, Int. Commun. Heat Mass Transfer 17 (1990)
813-821.

[22] O.V. Trevisan, A. Bejan, Combined heat and mass transfer
by natural convection in a porous medium, Adv. Heat
Transfer 20 (1990) 315-352.

[23] M. Kumari, H.S. Takhar, G. Nath, Double diffusive non-
Darcy free convection from two-dimensional and axisym-
metric bodies of arbitray shape in a saturated porous
medium, Indian J. Technol. 26 (1988) 324-328.

[24] J.Y. Jang, D.J. Tzeng, H.J. Shaw, Transient free convec-
tion with mass transfer on a vertical plate embedded in a
high-porosity medium, Numer. Heat Transfer Part A 20
(1991) 1-18.

[25] S.K. Rastogi, D. Poulikakos, Double-diffusion from a
vertical surface in a porous region saturated with a non-
Newtonian fluid, Int. J. Heat Mass Transfer 38 (1995) 935-
946.

[26] P.V.S.N. Murthy, P. Singh, Heat and mass transfer by
natural convection in a non-Darcy porous medium, Acta
Mech. 138 (1999) 243-254.

[27] S.J. Liao, The proposed homotopy analysis techniques for
the solution of nonlinear problems. Ph.D. dissertation (in
English), Shanghai Jiao Tong University, Shanghai, 1992.

[28] S.J. Liao, An approximate solution technique which does
not depend upon small parameters: a special example, Int.
J. Nonlinear Mech. 30 (1995) 371-380.

[29] S.J. Liao, A kind of approximate solution technique which
does not depend upon small parameters (part 2): an
application in fluid mechanics, Int. J. Nonlinear Mech. 32
(1997) 815-822.

[30] S.J. Liao, A uniformly valid analytic solution of two-
dimensional viscous flow over a semi-infinite flat plate, J.
Fluid Mech. 385 (1999) 101-128.

[31] S.J. Liao, An explicit, totally analytic approximate solution
for Blasius’ viscous flow problems, Int. J. Nonlinear Mech.
34 (1999) 759-778.

[32] S.J. Liao, An analytic approximation of the drag coefficient
for the viscous flow past a sphere, Int. J. Nonlinear Mech.
37 (2002) 1-18.

[33] S.J. Liao, A. Campo, Analytic solutions of the temperature
distribution in Blasius viscous flow problems, J. Fluid
Mech. 453 (2002) 411-425.



	An explicit solution for the combined heat and mass transfer by natural convection from a vertical wall in a non-Darcy porous medium
	Introduction
	Governing equations
	Explicit analytic solution given by the HAM
	Validation of the explicit analytic solution
	Conclusions
	References


